Motivation

Consider learning to play an unknown repeated game.

- Bandit algorithms: slow convergence rates.
- Full-information algorithms: improved rates but are often unrealistic.

Under some regularity assumptions and a new feedback model, we propose **GP-MW** algorithm. **GP-MW** improves upon bandit regret guarantees while not relying on full-information feedback.

- At each time *t*:
- player *i* picks action $a_t^i \in \mathcal{A}_i$
- other players pick actions a_t
- player *i* receives reward $r^i(a_t^i, a_t^{-i})$
- After T time steps, player i incurs **regret**:

$$R^{i}(T) = \max_{a \in \mathscr{A}^{i}} \sum_{t=1}^{T} r^{i}(a, \frac{a^{-i}}{t}) - \sum_{t=1}^{T} r^{i}(a^{i}_{t}, \frac{a^{-i}}{t})$$

Set-Up

player i

other players

- Reward function $r^i: \mathscr{A}^1 \times \cdots \times \mathscr{A}^N \to [0,1]$ is **unknown**
- Each time *t*, player *i* observes:
- 1) $\tilde{r}_t^i = r^i(a_t^i, a_t^{-i}) + \epsilon_t^i$, $\epsilon_t^i \sigma_i$ -sub-Gaussian (noisy bandit feedback)
- 2) a_t^{-l} (actions of the other players)
- Regularity (smoothness) assumption: $r^{i}(\cdot)$ has a bounded RKHS norm w.r.t. a kernel function $k^{i}(\cdot, \cdot)$

Key Idea

Use Gaussian Process (GP) confidence bounds to emu full-information feedback:

• Player *i* can use the observed data $\{a_{\tau}^{i}, a_{\tau}^{-i}, \tilde{r}_{\tau}^{i}\}_{\tau=0}^{t-1}$ to shrinking Upper Confidence Bound on $r^{i}(\cdot)$:

$$UCB_t(\cdot) = \mu_t(\cdot) + \beta_t^{1/2}\sigma_t(\cdot)$$

• $\mu_t(\cdot)$ and $\sigma_t(\cdot)$ are the posterior mean and covariance full computed using standard **GP regression**.

No-Regret Learning in Unknown Games with Correlated Payoffs Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause

GP-MW algorithm for player i

Initialize mixed strategy: $\mathbf{w}_1 = [{}^1/_{K_i}, \dots, {}^1/_{K_i}] \in \mathbb{R}^{K_i}$ For t = 1, ..., T:

- Sample action: $a_t^i \sim \mathbf{W}_t$
- Observe: noisy reward \tilde{r}_t^i & opponents actions a_t^{-i}
- Compute <u>optimistic</u> full-info. feedback $\mathbf{r}_t \in \mathbb{R}^{K_i}$:

 $\mathbf{r}_{t}[k] = \min\{UCB_{t}(a_{k}, a_{t}^{-i}), 1\}, k = 1, \dots, K_{i}$

- Update mixed strategy :

$$\mathbf{w}_{t+1}[k] \propto \mathbf{w}_t[k] \cdot \exp\left(\eta \cdot \mathbf{r}\right)$$

- Update GP model based on the new observed data

Def. Maximum information gain:

 $\gamma_T = \max I(\mathbf{r}_T; r^l)$ $x_1, ..., x_T$

• γ_T grows with domain's dimension d. E.g., $\gamma_T = \mathcal{O}((\log T)^{d+1})$ for SE kernels

Theorem. Assume
$$||r^i||_{k^i} \le B$$
. If player *i* uses **GP-MW**,
 $\beta_t = B + \sqrt{2\gamma_{t-1}} + \log(2/\delta)$ and $\eta = \sqrt{(8\log K_i)/T}$. Then, w.p. (1 – $R^i(T) = \mathcal{O}\left(\sqrt{T\log K_i} + B\sqrt{T\gamma_T} + \gamma_T\sqrt{T}\right)$

• For
$$a^i \in \mathbb{R}^{d_i}$$
 and Lipschitz rewards: $R^i(T)$

Summary

ulate the		Full-information	Bandit
build a	Feedback:	$\{r^{i}(a, a_{t}^{-i}), \forall a \in \mathscr{A}^{i}\}$	$r^i(a_t, a_t^{-i})$
	Regret:	$\mathcal{O}(\sqrt{T\log K_i})$	$\mathcal{O}(\sqrt{TK_i \log t})$
functions	Unrealistic since $r^i(\cdot$	Hedge [Freund and Schapire '97] c feedback, , •) is unknown Scal	Exp3 [Auer et al. 'C les badly with K_i

ETH Zürich

- $\mathbf{r}_t[k]$), $k = 1, \dots, K_i$

Mutual information btw. $|r^{i}(\cdot)|$ and $\mathbf{r}_{T} = [r^{i}(x_{t}) + \epsilon]_{t=1}^{T}$

- with $-\delta),$
- $= \mathcal{O}(\sqrt{d_i T \log(d_i T)} + \gamma_T \sqrt{T})$

S

Learning & Adaptive Systems

[2] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. *Journal of* Computer and System Sciences, 1997.

This work was gratefully supported by Swiss National Science Foundation, under the grant SNSF 200021_172781, and by the ERC grant 815943.