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Motivation and Problem Set-Up

= Games with continuous actions arise in several domains. Their (in)efficiency,

_ _ AR _ » Efficiency of the game is measured with the Price of Anarchy of any CCE:
however, is less understood than in games with finitely many actions.

max y(s)
= We consider N-player continuous - strategy sets: S; CRY PoA . s€S
described by: N OACCE — —. -
games G described by: - payoffs: mi: S =1l Si —» R min b |7 (8)]
ol S

- social function: y: ]R{fd — R

= PoA h i sl Teatiiors:
= A coarse correlated equilibrium (CCE) is a probability distribution o over the OCE es @i MpenEms: P e

outcomes S that satisfies * In multi-agent systems, bounds the inefficiency of no-regret dynamics
Feo[mi(s)] > Ego[mi(sh,s_5)], Vi, Vs, € S followed by selfish agents.
* In distributed optimization, certifies approximation guarantees of distributed
* No-regret learning dynamics converge to CCEs of the repeated game. no-regret algorithms.
Main Results
Def. A function f: X CR" — R is DR-submodular [1] if, Vx <y € X Vi € [n], N Designing Games for Distributed Optimization
Vk e Ry s.t. (x+ke;) and (y + ke;) € X,
N\ foetke;) = F(x) 2 £y + kei) — FLy) f N = 7 is monotone DR-submodular
max  y(x) - .
— | eI, X, * Disjoint constraints set
Def. G is a valid utility game with continuous strategies if: \ I:_.'E - y
i tone DR-submodular i ooy (S0 1) >
!_ > MONSTONE - - | 1€ 7 \ Idea: set-up a repeated game ¢ with \
1. 7Ti(s’i7 S—i) Z /Y(S) — /Y(O, S—i) for eaCh 1 and S . QE L. gi _ Strategy sets: S’L — X’L
iii. v(s) > Z?fﬂ mi(s) for each s. - payoffs m;(s) =(s) —v(0,s—;) ,
= max 7 (S2, S_2) max 7y (sy,S_n) fori=1,...,N .
S2€82 SNESN
\Extends [2,3] to continuous domains. \Was done in [5] for binary strategy sets.
. n . =
Def. Curvature of a monotone DR-submodular f: X TR} - R, wrt. 0€ Z2C X \ [Fact. T 2 velld williy same with continens sieemics. ]

0(Z)=1— inf  lim JXTKe) S

. < [0,1]
};chezee@ koot flke:) = £(0) Assume a no-regret learning algorithm exists for each player.

Let D-NOREGRET be the simultaneous implementation of such algorithms.

\ Generalizes total curvature of set functions. (Z) = 0 iff f is affine.

3 Nd
Theorem. Let S = {x e R"" |0 <x <s+5s', Vs,s' €S} . N Corollary. D-NOREGRET converges to a distribution o over X such that N

If G is a valid utility game where 7 has curvature a(S) < «, then .
E [y(x)] = 1/(1+a)~y(x)
PoAcce <1+a x~o

N\, Can improve the available (1 — e™') approximation by [1].

\ See extension to a class of non-submodular functions in [4].

Examples and Experiments

Continuous Budget Allocation game | Sensor Coverage Problem with continuous assignments
media channels  customers

o N advertisers invest in K media channels to attract %3 ‘ o Given: N autonomous sensors and d locations.
the maximum number of customers. W o o [Xi|r := energy of sensor ¢ allocated to location 7 .
o [si]r:= amount invested by advertiser ¢ in channel 7. o 1—(1—p!)xil := probability that sensor i detects an event in location 7 .
o p;i(r,t):= probability that advertiser i attracts customer ¢ :;"' : o Wy := probability of an event occurring in location -
via channel 7. L@ . . . . .
A\ & o Goal: Assign sensors to locations to maximize the probability of detecting
o Market analyst aims to maximize the average number R i an event: . N
of total attracted customers: (%) = Z cld] Wr ( - H e[N]( — ;) )
N
— —_ —_m. [si]r . e A .
v(s) = ZtET (1 Hi:l Hrer(t)(l pi(r,t)) )) o We can set—u-p a valid Utl-|lty game G and implement D-NOREGRET
(Online Gradient Ascent is no-regret for each player).
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0.015 0,02 §go5 003 10 # of edges Fig2: D-NOREGRET shows faster convergence than Frank-Wolfe variant by [1].
R ' per customer However, for K=3000 iterations the two algorithms perform equally.
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