

Bounding Inefficiency of Equilibria in Continuous Actions Games using Submodularity and Curvature

Pier Giuseppe Sessa, Maryam Kamgarpour, Andreas Krause

Motivation and Problem Set-Up

- Games with continuous actions arise in several domains. Their (in)efficiency, however, is less understood than in games with finitely many actions.
- We consider N-player continuous games \mathcal{G} described by:
- $\mathcal{S}_i \subseteq \mathbb{R}^d_+$ - strategy sets: - payoffs: $\pi_i:\mathcal{S}=\prod_{i=1}^N\mathcal{S}_i o\mathbb{R}$
- social function: $\gamma: \mathbb{R}^{Nd}_+ o \mathbb{R}$
- lacktriangle A coarse correlated equilibrium (CCE) is a probability distribution σ over the outcomes ${\cal S}$ that satisfies
 - $\mathbb{E}_{\mathbf{s} \sim \sigma}[\pi_i(\mathbf{s})] \geq \mathbb{E}_{\mathbf{s} \sim \sigma}[\pi_i(\mathbf{s}_i', \mathbf{s}_{-i})],$ $\forall i, \forall \mathbf{s}_i' \in \mathcal{S}_i$
- No-regret learning dynamics converge to CCEs of the repeated game.

Efficiency of the game is measured with the Price of Anarchy of any CCE:

$$PoA_{CCE} = \frac{\max_{\mathbf{s} \in \mathcal{S}} \gamma(\mathbf{s})}{\min_{\sigma \in \Delta} \mathbb{E}_{\mathbf{s} \sim \sigma}[\gamma(\mathbf{s})]}$$

- $lacktriangleq PoA_{CCE}$ has two important implications:
 - In multi-agent systems, bounds the inefficiency of no-regret dynamics followed by selfish agents.
 - In distributed optimization, certifies approximation guarantees of distributed no-regret algorithms.

Main Results

Def. A function $f: \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}$ is **DR-submodular** [1] if, $\forall \mathbf{x} \leq \mathbf{y} \in \mathcal{X}$, $\forall i \in [n]$, $orall k \in \mathbb{R}_+$ s.t. $(\mathbf{x} + k\mathbf{e}_i)$ and $(\mathbf{y} + k\mathbf{e}_i) \in \mathcal{X}$, $f(\mathbf{x} + k\mathbf{e}_i) - f(\mathbf{x}) \ge f(\mathbf{y} + k\mathbf{e}_i) - f(\mathbf{y})$

Def. \mathcal{G} is a valid utility game with continuous strategies if:

- i. γ is monotone DR-submodular
- ii. $\pi_i(\mathbf{s}_i, \mathbf{s}_{-i}) \ge \gamma(\mathbf{s}) \gamma(\mathbf{0}, \mathbf{s}_{-i})$ for each i and \mathbf{s} .
- iii. $\gamma(\mathbf{s}) \geq \sum_{I=1}^{N} \pi_i(\mathbf{s})$ for each \mathbf{s} .

Extends [2,3] to continuous domains.

Def. Curvature of a monotone DR-submodular $f:\mathcal{X}\subseteq\mathbb{R}^n_+ o\mathbb{R}$, w.r.t. $\mathbf{0}\in\mathcal{Z}\subseteq\mathcal{X}$:

$$\alpha(\mathcal{Z}) = 1 - \inf_{\substack{\mathbf{x} \in \mathcal{Z}, i \in [n]: \\ \mathbf{x} + k\mathbf{e}_i \in \mathcal{Z}}} \lim_{k \to 0^+} \frac{f(\mathbf{x} + k\mathbf{e}_i) - f(\mathbf{x})}{f(k\mathbf{e}_i) - f(\mathbf{0})} \in [0, 1]$$

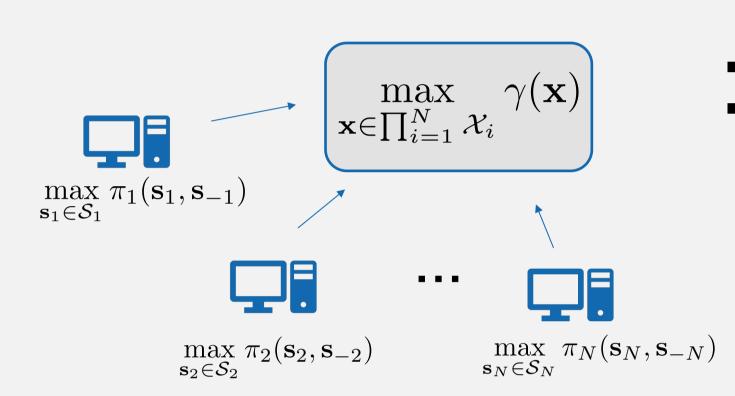
Generalizes total curvature of set functions. $\alpha(\mathcal{Z}) = 0$ iff f is affine.

Theorem. Let $\tilde{S} = \{ \mathbf{x} \in \mathbb{R}^{Nd} \mid \mathbf{0} \leq \mathbf{x} \leq \mathbf{s} + \mathbf{s}', \ \forall \mathbf{s}, \mathbf{s}' \in \mathcal{S} \}$. If \mathcal{G} is a valid utility game where γ has curvature $\alpha(\mathcal{S}) \leq \alpha$, then

 $PoA_{CCE} \leq 1 + \alpha$

See extension to a class of non-submodular functions in [4].

Designing Games for Distributed Optimization



- γ is monotone DR-submodular
- Disjoint constraints set

Idea: set-up a repeated game $\hat{\mathcal{G}}$ with - strategy sets: $\mathcal{S}_i = \mathcal{X}_i$ - payoffs $\pi_i(\mathbf{s}) = \gamma(\mathbf{s}) - \gamma(\mathbf{0}, \mathbf{s}_{-i})$ for $i=1,\ldots,N$. Was done in [5] for binary strategy sets.

Fact. $\hat{\mathcal{G}}$ is a valid utility game with continuous strategies.

Assume a no-regret learning algorithm exists for each player. Let D-NOREGRET be the simultaneous implementation of such algorithms.

Corollary. D-NOREGRET converges to a distribution σ over ${\mathcal X}$ such that

$$\underset{\mathbf{x} \sim \sigma}{\mathbb{E}} [\gamma(\mathbf{x})] \ge 1/(1+\alpha) \, \gamma(\mathbf{x}^*) \quad .$$

Can improve the available $(1 - e^{-1})$ approximation by [1].

Examples and Experiments

Continuous Budget Allocation game

- \circ N advertisers invest in R media channels to attract the maximum number of customers.
- $\circ [\mathbf{s}_i]_r := \text{amount invested by advertiser } i \text{ in channel } r.$
- $p_i(r,t) := probability that advertiser i attracts customer t$ via channel r.
- Market analyst aims to maximize the average number of total attracted customers:

 $\gamma(\mathbf{s}) = \sum_{t \in \mathcal{T}} \left(1 - \prod_{i=1}^{N} \prod_{r \in \Gamma(t)} (1 - p_i(r, t))^{[\mathbf{s}_i]_r} \right)$

Fig1: For small attraction probabilities and number of edges, the obtained PoA bound strictly improves the bound of 2 by [3] for the discrete setting.

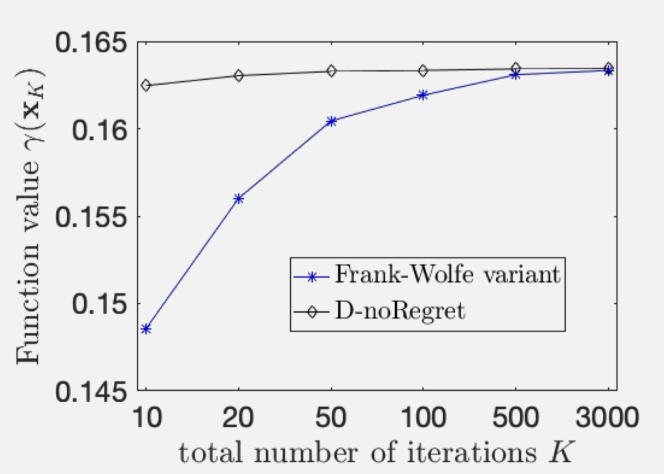
media channels

customers

Sensor Coverage Problem with continuous assignments

- \circ Given: N autonomous sensors and d locations.
- $\circ [\mathbf{x}_i]_r :=$ energy of sensor i allocated to location r .
- $0 \quad 1 (1 p_i^r)^{[\mathbf{x}_i]_r} := \text{probability that sensor } i \text{ detects an event in location } r$.
- \circ $w_r :=$ probability of an event occurring in location r.
- o Goal: Assign sensors to locations to maximize the probability of detecting an event: $\gamma(\mathbf{x}) = \sum_{r \in [d]} w_r \left(1 - \prod_{i \in [N]} (1 - p_i^r)^{[\mathbf{x}_i]_r} \right)$

 \circ We can set-up a valid utility game $\hat{\mathcal{G}}$ and implement D-NOREGRET (Online Gradient Ascent is no-regret for each player).



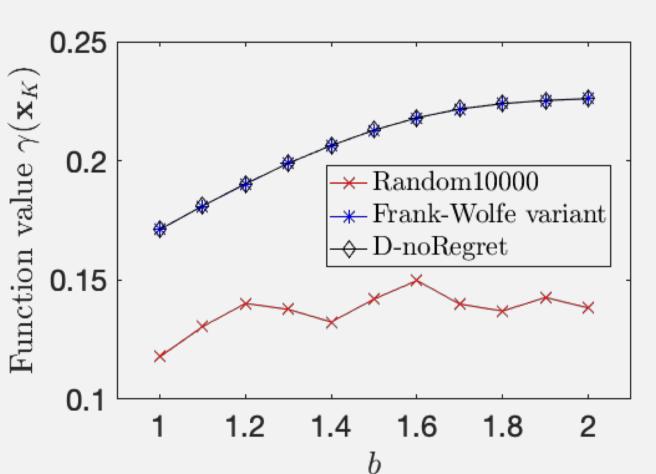


Fig2: D-NOREGRET shows faster convergence than Frank-Wolfe variant by [1]. However, for K=3000 iterations the two algorithms perform equally.

Acknowledgements

0.01

0.015

This work was gratefully supported by Swiss National Science Foundation, under the grant SNSF 200021 172781, and by the European Union's Horizon 2020 ERC grant 815943.

References

0.005

- [1] A. A. Bian, B. Mirzasoleiman, J. M. Buhmann, and A. Krause. Guaranteed non-convex optimization over continuous domains. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017.
- [2] A. Vetta. Nash equilibria in competitive societies, with applications to facility location, traffic routing and auctions. In *Proceedings of the 43rd Symposium on Foundations of Computer Science*, FOCS '02. [3] T. Maehara, A. Yabe, and K. Kawarabayashi. Budget allocation problem with multiple advertisers: A game theoretic view. In Proceedings of the 32nd International Conference on Machine Learning, ICML'15.
- [4] P.G. Sessa, M. Kamgarpour, and A. Krause. Bounding Inefficiency of Equilibria in Continuous Actions Games using Submodularity and Curvature. In Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019.
- [5] J. R. Marden and A. Wierman. Distributed welfare games. Operations Research, 2013.

0.02 0.025

0.03

of edges

per customer